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ABSTRACT 

A linear predictive error variance analysis was employed using the one-
dimensional state-of-the-ground model FASST (Fast All-season Soil STrength) 
and calibration data for Yuma, Arizona (Frankenstein and Koenig 2004). The 
analysis was performed with the intent to quantify soil moisture predictive error 
and to examine ways in which it could be reduced, in particular, to demonstrate a 
methodology wherein one can examine the contribution from each individual 
model parameter to overall soil moisture predictive error variance. 
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FASST Soil Moisture Prediction Error 
at Yuma, Arizona 

BRIAN E. SKAHILL AND SUSAN FRANKENSTEIN 

1 INTRODUCTION 

The effort described herein is based on the linear analysis presented by 
Moore and Doherty (2005) wherein predictive error variance is computed 
subsequent to regularized inversion as a means of model calibration. The 
objectives of this document, using the linear analysis of Moore and Doherty 
(2005) and the FASST (Fast All-season Soil STrength) model for Yuma, Arizona 
(Frankenstein and Koenig 2004), are to 

1.  Quantify and compare notional predictive error variance for two speci-
fied soil moisture predictions (one immediately following a storm event 
and the other following a period with no precipitation); 

2.  Examine the role of the calibration process in reducing notional pre-
dictive error variance for the two specified soil moisture predictions; 

3.  Measure the worth of additional data in terms of how much it would 
reduce soil moisture prediction error; 

4.  Examine the contribution from each individual model parameter to 
overall soil moisture predictive error variance. 

The analysis was performed with the intent to quantify soil moisture pre-
dictive error and to examine ways in which it could be reduced. The analysis is 
presented with the understanding that model parameters are related to underlying 
hydrologic processes that are represented in the FASST simulator. FASST is a 
one-dimensional state-of-the-ground dynamic model. As additional hydrologic 
processes are represented in FASST (e.g., lateral flow) and future versions of 
FASST are deployed, analyses similar to that contained herein could guide the 
identification of the level of model complexity that is required, depending on  
the availability of calibration data, to predict soil moisture with minimal error 
variance. 
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2 BACKGROUND 

Moore and Doherty (2005) applied linear analysis to derive an equation to 
determine predictive error variance consequent to regularized inversion as a 
means of model calibration: 

σ2
s–ŝ = yt(I – R)C(p)(I – R)ty + ytGC(ε)Gty, (1a) 

σ2
s–ŝ = ytV2Vt

2C(p)V2Vt
2y + σ2

hytV1E1
–1Vt

1y, (1b) 

σ2
s–ŝ = σ2

pytV2Vt
2y + σ2

hytV1E1
–1Vt

1y (1c) 

where 

σ2
s–ŝ = predictive error variance 

p = m true model parameters 

C(p) = covariance matrix of p 

y = sensitivities of the prediction to model parameters 

X = model sensitivity matrix 

Q = cofactor matrix whose diagonal elements contain the 
squares of the observation weights 

ε = measurement and structural noise 

C(ε) = covariance of the measurement and structural noise 
(assumed to be diagonal) 

V = [V1 V2] = matrix of eigenvectors of the normal matrix XtQX 

V1 = eigenvectors associated with the k largest eigenvalues 
of XtQX 

V2 = eigenvectors associated with the remaining 
eigenvalues of XtQX 

E1 = diagonal matrix containing the k largest eigenvalues of 
XtQX 

I = identity matrix 

R = V1Vt
1 = model resolution matrix 
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σ2
h = the reference variance 

σ2
p = assumed constant variance for the model parameters. 

G = V1E1
–1Vt

1XtQ and p̂  = Gh = G(Xp + ε), where p̂  represents the m 
estimated model parameters (that is, the set of parameters corresponding to p 
calculated through the calibration process) and h is the vector of n field 
measurements. 

Based on an inspection of equations (1a), (1b), and (1c), the following 
observations are summarized (Moore and Doherty 2005). 

A. The orthonormal basis vectors, V, that span the range of model (para-
meter) space can be subdivided into two separate subspaces, V1 and V2. The 
vectors that comprise V2 span the “calibration null space” (Tonkin and Doherty 
2005), which consists of the model null space and the orthonormal basis vectors 
of V with corresponding near-zero eigenvalues. Near-zero singular values ampli-
fy data noise and lead to potential instability during the inverse process (i.e., 
calibration). The calibration null space often includes system detail represented 
in the model that is simply beyond the reach of the calibration dataset to infer. 
The remaining orthonormal basis vectors of V define V1, and they span the 
“calibration solution space” (Tonkin and Doherty 2005). The generalized inverse 
solution is expressed as a linear combination of vectors occupying the V1 sub-
space. Decomposition of V into V1 and V2 is based on the specification of a 
regularization parameter that defines truncation. This can be based on, among 
other things, an examination of the singular value spectrum, or in the case 
described herein, specified in a manner to minimize the error variance for a 
specific model prediction. 

B. Predictive error variance is the sum of two explicit terms: 
 a. The degree to which measurement and structural noise contribute to 
model error, and 
 b. The contribution from the calibration null space to predictive error 
variance. If a prediction is sensitive to linear combinations of parameters that 
cannot be inferred through the calibration process (and this lies within the 
calibration null space), then the error variance of that prediction is unchanged 
from what it would have been if the model had not been calibrated at all. 

C. If regularization is not required in solution of the inverse problem 
because the system is simple enough and the calibration dataset is informative 
enough for the null space to be reduced to zero dimensions, predictive error 
variance is solely the contribution resulting from model calibration (the second 
term of equations [1a], [1b], and [1c]), because the model resolution matrix, R = 
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VVt = I, is equal to the identity matrix for overdetermined systems. Model 
predictive error variance is thus solely a function of measurement noise. 

D. If a given prediction is strongly influenced by uncapturable system detail 
(because it is sensitive to that detail), then the first term represented in equations 
(1a), (1b), and (1c), for the predictive error variance, may be quite large in rela-
tion to the second. 

E. For an uncalibrated model, the second term in equations (1a), (1b), and 
(1c) is zero, the model resolution matrix is the null matrix, and total predictive 
error variance is equal to ytC(p)y, as expected. 

F. Where a model is a perfect replicator of reality (and hence there is no 
structural component of measurement noise), and where the observational com-
ponent of measurement noise is zero, a perfect fit between model outputs and 
field measurement could be obtained. In this case, the second term of the above 
equations is zero, but the first may still be substantial. 

G. In the extreme case that the prediction sensitivity is parallel to a trun-
cated eigenvector (in V2), then the calibration process does nothing to reduce  
the uncertainty of that prediction, for the second term is zero regardless of the 
amount of measurement noise. 

H. On the other hand, if the prediction sensitivity is parallel to a retained 
eigenvector (in V1), then the first term in equations (1a), (1b), and (1c) is zero, 
the second term is nonzero, and its magnitude depends upon the amount of 
measurement /structural noise associated with the calibration dataset (which the 
calibration process can provide information on) and also on the relative magni-
tude of the eigenvalue, within the singular value spectrum, that corresponds to 
the eigenvector to which y is parallel. 

I. In general, as fewer eigenvectors are truncated, the first term in equations 
(1a), (1b), and (1c) falls approximately in a monotonic manner, whereas the 
second term rises in an approximately monotonic manner. Moreover, assuming 
the observation data set contains sufficient information for the calibration process 
to reduce predictive error variance, a minimum for the predictive error variance is 
typically achieved at a specific truncation level. 

J. Among others, the equations for predictive error variance can be used 
prior to the calibration process to determine the optimal singular value truncation 
level (which is roughly related to model complexity) for a given prediction. At 
this optimum level, the predictive error variance is reduced to as low as it can be, 
given the data available for calibration, and the noise associated with this data. 
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K. Equations (1a) through (1c) do not involve the use of actual field data, 
only the sensitivities of the model outputs (corresponding to field measurements) 
with respect to the input parameters. Hence “notional calibration exercises” can 
be undertaken with different posited measurements included in the calibration 
process. The worth of different data acquisition strategies can thus be compared 
in terms of their ability to reduce model predictive error variance. 

L. By repeatedly recalculating model predictive error variance under the 
assumption that certain parameters, or parameter types, are perfectly known (and 
hence need not be estimated through the calibration process), the reduction in 
predictive uncertainty accrued through this process can be used as a measure of 
that parameter’s or parameter type’s contribution to model predictive error. 

Moore and Doherty (2005) also discuss the consequences of parameter 
lumping, or zonation, on the computation of predictive error variance. See Moore 
and Doherty (2005) for details of the derivation of equations (1a), (1b), and (1c), 
a lengthier discussion of their meaning, and an example application. Equations 
(1a), (1b), and (1c) can be computed using utility programs that are now part of 
the public domain software PEST (Parameter ESTimation) (Doherty 2005). We 
used PEST (Doherty 2004), and the PEST surface water utilities (Doherty 2003) 
for the analysis presented in the following section. 

As we stated previously, this analysis is based on a linearity assumption and 
may thus be somewhat in error as far as predictions of actual error variance are 
concerned. However, while the exact results will be in error, the analysis will be 
informative in a relative sense and will allow useful conclusions to be drawn. 
One could also apply the nonlinear extension of the theory presented in Moore 
and Doherty (2005). However, unlike linear analysis, which, as discussed above, 
relies only on characterizations of model predictive noise rather than on the exact 
values of the measurements themselves, nonlinear analysis can proceed only in 
the context of a specific calibration dataset. 
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3 ANALYSIS 

The objectives of the analysis presented herein, using the linear analysis of 
Moore and Doherty (2005), the FASST model, and calibration data for Yuma, 
Arizona (Frankenstein and Koenig, 2004), are to 

1.  Compute the notional predictive error variance for two soil moisture 
predictions (one immediately following a storm event and the other 
following a period with no precipitation); 

2.  For each prediction, determine the minimum notional predictive error 
variance that is achievable with the available calibration data; 

3.  Conduct a notional data acquisition exercise to examine the reduction 
that could be accrued in the error variance for a given soil moisture 
prediction through the acquiring of such extra data; 

4.  Compute the contribution to overall soil moisture predictive error 
variance from each individual adjustable model parameter. 

With respect to items 1 and 2, the notional predictive error variance analysis 
for the two soil moisture predictions involved calculating σ2

s–ŝ at all possible 
truncation levels. The notional analysis described in item 3 required building a 
new time series of model weather input, assigning new observation weights, and 
recalculating σ2

s–ŝ. The contribution to overall soil moisture predictive error 
variance from each individual adjustable model parameter was determined by 

I.  Recording the minimum of the predictive error variance curve (i.e., the 
curve of predictive error variance versus the number of singular values 
before truncation) for each prediction. At this stage all parameters are 
involved in the parameter estimation process. 

II.  Removing one parameter from the parameter estimation process and 
repeating the exercise, in each case finding the minimum of the error 
variance curve. 

III.  Comparing minima obtained in items I and II to establish the contribu-
tion to the predictive error variance from the selected parameter. 

With the assumption that the limited observation dataset that is available for 
the Yuma site would be used in its entirety for model calibration, predictions 
were based on a dual model run (Doherty 2004). The only difference between  
the weather dataset employed for the predictions and that used for the calibration 
effort is that the magnitude of all precipitation data was doubled (Fig. 1). For 
convenience, the date and times associated with the weather data for the pre-
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diction run was set equal to the corresponding date and time for the observed 
weather data. Two surface soil moisture predictions were specified, one imme-
diately following the two storm events that occurred on 26 March 1993, and the 
other after a period with no precipitation. Table 1 summarizes the specifics for 
the two predictions. 

 

Figure 1. Precipitation data used for calibration and prediction. 

 

Table 1. Surface soil moisture predictions 

Prediction Description 

y1 
Maximum surface soil moisture for 27 March 1993 (86th day 
of the year) 

y2 
Mean surface soil moisture for 26 April 1993 (116th day of 
the year) 

 

3.1 Compute Notional Predictive Error Variance; Determine Minimums 

We used Equation 1 to compute notional predictive error variance for the two 
specified predictions using truncated singular valued decomposition (TSVD). 
This involved 
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1. Interfacing PEST with FASST for the Yuma site 

 a. Specifying adjustable model parameters and subsequently preparing 
PEST template files. The names and meanings of the sixteen adjust-
able model parameters are listed in Table 2. Given that iddm = 
bddm/(1.0 – por), vfs = 1.0 – por, void = por/(1.0 – por), and mwc = 
por, there are in fact only twelve adjustable model parameters. It can 
also be argued that tcbdm depends on bddm (Farouki 1981), but for 
this study, we consider them to be independent of one another. In 
order to better accommodate scaling issues resulting from the use of 
different units for different parameters, and in an attempt to decrease 
the degree of nonlinearity of the parameter estimation problem, we 
estimated the logs of these parameters instead of their native values. 
Past experience has demonstrated that greater efficiency and stability 
of the parameter estimation process can often be achieved through 
this means (Doherty and Skahill in press). 

 b. Writing software to extract and process simulated FASST surface 
soil moisture data and surface temperature data into the “site sample 
file” format (Doherty 2003). 

 c. Specifying weights for the observed surface soil moisture data (see 
Fig. 2) and the observed surface temperature data (see Fig. 3) to be 
equal to the inverse of the assumed standard deviation of the obser-
vation noise (Aster et al. 2005). 

 d. Using PEST surface water utilities to process observed and simulated 
surface soil moisture data and surface temperature data, and the 
specified predictions y1 and y2 (which were both assigned a weight  
of zero), to support the preparation of a PEST control file that then 
would guide subsequent calibration and predictive error analyses. 



FASST Soil Moisture Prediction Error 9 

 

 

Table 2. Name and meaning of FASST input parameters. 

Name Meaning 

bddm bulk density of dry material (g/cm3) 

iddm intrinsic density of dry material (g/cm3) 

vfs volume fraction of solids (0.0 – 1.0) 

por porosity (0.0 – 1.0) 

void void ratio (0.0 – 1.0) 

sani Surface albedo – normal incidence 

lse Longwave surface emissivity 

qc quartz content (0.0 – 1.0) 

of organic fraction (0.0 – 1.0) 

tcbdm thermal conductivity of the bulk dry material (W/m*K) 

shdm specific heat of dry material (J/kg*K) 

shc saturated hydraulic conductivity (cm/s) 

rwc residual water content (vol/vol) (0.0 – 1.0) 

mwc maximum water content (vol/vol) (0.0 – 1.0) 

vGBph van Genuchten Bubbling pressure head (cm) 

vGe van Genuchten exponent (n) 

 

2. Computing derivatives for all model outputs (including the two predictions 
[see Table 1]) with respect to all adjustable model parameters. 

3. Defining C(p), a pre-calibration assessment of the inherent variability of 
each parameter, based on expert knowledge of the system and system properties 
(Guymon et al. 1993, Koenig 1994, Sullivan et al. 1997, Schaap 1999, Peck 
2002, Frankenstein and Koenig 2004), to be diagonal and each diagonal term to 
be equal to the square of the standard deviation associated with each adjustable 
model parameter. We approximated the standard deviation in each case as 
follows: σi = 0.25* [log10 (UB) – log10 (LB)], where UB is the parameter’s upper 
bound and LB is the parameter’s lower bound. 

4. Defining an observation reference variance, σ2
r, where it is assumed that 

C(ε) = σ2
rQ. We estimated this on the basis of model to measurement misfit 

achieved through a calibration process. 

5. Computing the predictive error variance at all possible truncation levels.
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Figure 2. Observed surface soil moisture data. (See Frankenstein and Koenig [2004] for 
additional details.) 
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Figure 3. Observed surface temperature data. (See Frankenstein and Koenig [2004] for 
additional details.)
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Results from the notional predictive error analysis are presented in Table 3 
and Figure 4 for the first prediction, y1, and Table 4 and Figure 5 for the second 
prediction, y2. 

 

Table 3. Notional predictive error variance for y1. 
Singular values 1st term 2nd term Total variance Standard deviation 

0 1.33E-02 0 1.33E-02 0.1154064 
1 1.31E-02 1.04E-08 1.31E-02 0.114401 
2 1.31E-02 1.08E-08 1.31E-02 0.1144537 
3 1.29E-02 2.82E-08 1.29E-02 1.14E-01 
4 1.21E-02 1.69E-07 1.21E-02 1.10E-01 
5 1.13E-02 1.04E-06 1.13E-02 1.06E-01 
6 1.00E-02 8.38E-06 1.01E-02 0.1002882 
7 1.05E-02 8.76E-06 1.05E-02 0.1024523 
8 3.78E-03 4.74E-05 3.83E-03 6.19E-02 
9 1.21E-04 1.96E-04 3.18E-04 1.78E-02 
10 1.28E-04 1.97E-04 3.24E-04 1.80E-02 
11 2.35E-08 4.68E-04 4.68E-04 2.16E-02 
12 0 4.69E-04 4.69E-04 2.17E-02 

 

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

0 1 2 3 4 5 6 7 8 9 10 11 12

Eigenvalue

Pr
ed

ic
tiv

e 
er

ro
r v

ar
ia

nc
e 

(L
og

ar
ith

m
ic

 S
ca

le
)

1st term
2nd term
total

 

Figure 4. Notional predictive error variance for y1. 
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Table 4. Notional predictive error variance for y2. 
Singular values 1st term 2nd term Total variance Standard deviation 

0 3.72E-03 0 3.72E-03 6.10E-02 
1 1.46E-04 7.27E-08 1.46E-04 1.21E-02 
2 4.21E-05 9.52E-08 4.22E-05 6.49E-03 
3 2.28E-05 1.16E-07 2.29E-05 4.78E-03 
4 1.20E-06 1.51E-07 1.35E-06 1.16E-03 
5 7.20E-07 1.55E-07 8.75E-07 9.35E-04 
6 9.71E-07 1.60E-07 1.13E-06 1.06E-03 
7 1.04E-06 1.61E-07 1.20E-06 1.10E-03 
8 3.44E-08 1.83E-07 2.17E-07 4.66E-04 
9 6.46E-08 1.84E-07 2.49E-07 4.99E-04 
10 3.44E-08 1.89E-07 2.23E-07 4.72E-04 
11 6.22E-13 2.62E-07 2.62E-07 5.12E-04 
12 0 2.62E-07 2.62E-07 5.12E-04 
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Figure 5. Notional predictive error variance for y2. 
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Examining the results for the notional predictive error analysis for the two 
specified predictions, in each case we see 

1.  The second and first term rising and falling, respectively, in an approxi-
mate monotonic manner as fewer eigenvectors are trunctated. 

2.  The minimum predictive error variance occurring at a specific truncation 
level. 

We calculated the pre-calibration predictive error variance using zero sin-
gular values. In this case, the second term in equations (1a), (1b), and (1c) is 
zero, as noted above (also see Tables 3 and 4). The difference between the pre-
calibration predictive error variance and the minimum predictive error variance  
is a measure of the worth of the calibration process in reducing predictive error 
variance. Hence, for both y1 and y2, calibration would reduce predictive error 
variance. However, a greater reduction in predictive error variance would be 
accrued through calibration for the second prediction, by a factor of approxi-
mately 5.8E-05, relative to the first prediction, where the reduction is approxi-
mately 2.4E-02. Results from the notional predictive error analysis also indicate 
that there would be more predictive uncertainty associated with the prediction 
immediately following the two storm events than the prediction following a 
period with no precipitation. We also can observe that the minimum predictive 
error variance for y1 required using nine singular values, whereas the minimum 
predictive error variance for y2 required using eight singular values. In summary, 
the notional predictive error variance analysis indicated that 

• The calibration process would be of value in reducing predictive 
uncertainty for both predictions (y1 and y2), but that a much greater reduction 
would be achieved, by model calibration, for the second prediction relative to 
the first prediction. 

• There would be greater predictive uncertainty associated with soil 
moisture prediction using FASST for the Yuma site for periods immediately 
following storm events in comparison to periods with  
no precipitation. 

These findings are likely a function of the observation data set that we used 
for model calibration, in particular, to the variance associated with the soil mois-
ture observations (see Figure 2) immediately following the two storm events 
(both occurring on 26 March 1993 [Fig. 1], and also to the fact that just two 
storm events occurred during the entire calibration period (15 March 1993–30 
April 1993). 
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3.2 Data Acquisition and Reduction in Error Variance 

We performed a single notional data acquisition exercise to examine the 
reduction that could be achieved in reducing the error variance for the soil 
moisture prediction immediately following the two manufactured storm events. 
Rather than construct an altogether new weather input data file, we recalculated 
the weights for the observed soil moisture data immediately following the storms 
to be commensurate with the weights assigned for the remaining observed soil 
moisture data. Hence, this notional data acquisition exercise examined the bene-
fits that could be gained in terms of reducing predictive error variance for y1 
based on the assumption that soil moisture observations following storm events 
were collected with greater precision. The minimum error variance for y1 was 
reduced by a factor of approximately 38 percent (see Table 5). 

 

Table 5. Notional predictive error variance for y1 based on assumed data acquisition 
strategy. 

Singular values 1st term 2nd term Total variance Standard deviation 
0 1.33E-02 0 1.33E-02 0.1154064 
1 1.31E-02 1.03E-08 1.31E-02 0.1143415 
2 1.31E-02 1.06E-08 1.31E-02 0.1143799 
3 1.29E-02 2.76E-08 1.29E-02 1.14E-01 
4 1.20E-02 1.63E-07 1.20E-02 1.10E-01 
5 1.11E-02 1.09E-06 1.11E-02 1.06E-01 
6 9.40E-03 8.58E-06 9.41E-03 9.70E-02 
7 9.91E-03 9.24E-06 9.91E-03 9.96E-02 
8 2.54E-03 4.92E-05 2.59E-03 5.09E-02 
9 3.82E-05 1.65E-04 2.03E-04 1.42E-02 
10 2.99E-05 1.68E-04 1.98E-04 1.41E-02 
11 1.27E-08 2.15E-04 2.15E-04 1.47E-02 
12 0 2.16E-04 2.16E-04 1.47E-02 
 

3.3 Contribution to Predictive Error Variance from Individual Parameters 

We computed the contribution to overall soil moisture predictive error 
variance from each individual adjustable model parameter as described above. 
This allows one to assess the relative importance of each model parameter to a 
specific prediction. The results of the analysis are presented in Tables 6 and 7 for 
the first and second prediction, respectively. 
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Table 6. Percent reduction accrued in minimum predictive error variance for y1 assuming 
each parameter, in turn, is perfectly known. 

Adjustable parameter % reduction in minimum predictive error variance 
 Before calibration After calibration 

bddm 0.64 10.43 
por 0.09 –2.36 
sani 0.00 0.52 
lse 0.00 –0.35 
qc 0.63 3.35 
of 0.00 0.01 

tcbdm 0.38 21.07 
shdm 0.00 –3.19 
shc 94.24 71.60 
rwc 0.06 38.58 

vgbph 0.09 17.56 
vge 3.86 –8.08 

 

Table 7. Percent reduction accrued in minimum predictive error variance for y2 
assuming each parameter, in turn, is perfectly known. 
Adjustable parameter % reduction in minimum predictive error variance 

 Before calibration After calibration 
bddm 0.00 0.01 
por 0.14 –1.47 
sani 0.00 5.40 
lse 0.00 8.74 
qc 0.00 2.27 
of 0.00 0.00 

tcbdm 0.00 –0.57 
shdm 0.00 –4.65 
shc 0.00 0.45 
rwc 0.21 17.03 

vgbph 0.14 11.55 
vge 99.51 –1.58 
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Examining the contents of Table 6 and Table 7, the following observations 
can be made: 

1. For prediction y1 

 a. Before calibration, 

  i. Obtaining prior information about the saturated hydraulic 
conductivity would, by far, go the farthest in reducing the 
predictive error variance. 

  ii. Obtaining prior information concerning the van Genuchten 
exponent would be the second, although distant, most important 
parameter in terms of reducing the predictive error variance. 

  iii. Obtaining prior information concerning the bulk density of dry 
material, quartz content, thermal conductivity of the bulk dry 
material, porosity, van Genuchten bubbling pressure head, and 
the residual water content would result only in a possible slight 
reduction in predictive error variance. 

  iv. Obtaining prior information concerning surface albedo-normal 
incidences, longwave surface emissivity, organic fraction, and 
specific heat of dry material would be of no value in reducing 
predictive error variance. 

 b. After calibration, 

  i. The parameter estimate for the saturated hydraulic conductivity 
contributes the most to predictive error variance. 

  ii. In decreasing order, the parameter estimates obtained for the 
residual water content, the thermal conductivity of the bulk dry 
material, the van Genuchten bubbling pressure head, and the 
bulk density of dry material are also important to predictive error 
variance. 

  iii. Knowledge obtained through the calibration process for the 
following parameters is of little to no importance to the pre-
dictive error variance. 

   1. por 
   2. sani 
   3. qc 
   4. of 
   5. shdm 
   6. vge 
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2. For prediction y2 

 a. Before calibration, 

  i. Obtaining prior information concerning the van Genuchten 
exponent would explain almost all of the predictive error 
variance. 

  ii. Obtaining prior information concerning the porosity, van 
Genuchten bubbling pressure head and the residual water content 
would possibly result in a slight reduction in predictive error 
variance. 

  iii. Obtaining prior information concerning the remaining param-
eters would serve no value in reducing the predictive error 
variance. 

 b. After calibration, 

  i. In decreasing order, the parameter estimates for the residual 
water content, the van Genuchten bubbling pressure head, 
longwave surface emissivity, surface albedo-normal incidences, 
and quartz content are of most importance to predictive error 
variance. 

  ii. The remaining parameters are of little to no value to predictive 
error variance. 

For periods immediately following storm events, parameter estimates 
obtained through the calibration of soil properties related to water movement  
and retention, especially the saturated hydraulic conductivity (shc), would be 
most important to the soil moisture predictive error variance. For soil moisture 
prediction following periods with no precipitation, parameter estimates obtained 
through the calibration of soil properties related to both the soil hydraulic and 
thermal properties both would be of value to minimizing the predictive error 
variance. 

For both predictions, the organic fraction parameter (of) was determined  
to be of no importance to predictive error variance before or after calibration 
because that component of the prediction sensitivity vector was zero for the 
second prediction and almost zero for the first (see Appendix A and Doherty 
[2005]). 
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3.4 Calibration 

After rescaling the weights for the two observation groups such that they 
each made an equal contribution to the objective function at the beginning of the 
calibration process, we employed truncated singular valued decomposition to 
support regularized inversion of FASST for the Yuma site. Truncation was 
specified to occur when the ratio of all remaining eigenvalues to the maximum 
system eigenvalue was less than 10–10. The Marquardt lambda was not employed 
to further stabilize the parameter estimation process. Table 8 lists the estimated 
parameter values obtained using TSVD. Examining the diagonal elements of the 
model resolution matrix listed in Appendix B, it is apparent that the parameters 
bddm, por, lse, tcbdm, shdm, and vge were estimated well whereas the param-
eters sani, qc, and of were estimated poorly. 

 

Table 8. Estimated model parameter values obtained for 
the FASST model for Yuma, Arizona, using TSVD. 

Parameter  Value 

bddm 1.140000 

por 0.5045182 

sani 0.3500000 

lse 0.9900000 

qc 0.1500000 

of 1.9995444E-06 

tcbdm 0.3486975 

shdm 850.6000 

shc 6.2560347E-03 

rwc 4.2122053E-03 

vgbph 26.55427 

vge 1.366374 

 

Figures 6 and 7 are plots of the calibrated model output along with the 
measured data. 
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Figure 6. Plot of simulated surface soil moisture and observed surface soil moisture. 
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Figure 7. Plot of simulated surface soil temperature and observed surface soil 
temperature. 
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4 CONCLUSIONS 

We employed the linear analysis of Moore and Doherty (2005) using the 
FASST model with data collected at Yuma, Arizona (Frankenstein and Koenig 
2004) to 

1.  Quantify and compare notional predictive error variance for two speci-
fied soil moisture predictions (one immediately following a storm event 
and the other following a period with no precipitation), 

2.  Examine the role of the calibration process in reducing notional predic-
tive error variance for the two specified soil moisture predictions, 

3.  Measure the worth of additional data in terms of how much it would 
reduce soil moisture prediction error, 

4.  Examine the contribution from each individual model parameter to 
overall soil moisture predictive error variance. 

The underlying intent of the notional predictive error variance analysis 
presented herein for the one-dimensional state-of-the-ground dynamic model 
FASST, using observed data for the Yuma site, was to demonstrate a method  
that could later be used to assess the relative worth of vertical processes versus 
horizontal processes for soil moisture prediction. In the future, either a multi-
dimensional version of FASST or an alternate model will be used to address 
these issues. 

A “simpler,” effectively vertical, one-dimensional model could be built from 
a more complex multi-dimensional model by fixing parameter values in space. 
Hence, the complex model could be used to compute the predictive error variance 
for the “simpler” model built from it. The complex model could also be used to 
calculate the predictive error variance when full heterogeneity is allowed. If the 
predictive error variance for the “simpler,” effectively vertical, one-dimensional 
model is not much greater than that of the complex model, then the “simpler” 
model is just as good, because the observation dataset used to support model 
calibration does not have the information content required to support the complex 
model anyway. Also, one could determine the contribution to the error variance 
of key model predictions made by different parameter types before and after 
calibration. If there are parameter types that make a large contribution before 
calibration but a reduced contribution after calibration, and if these parameters 
pertain to processes not represented, or effectively eliminated, in the “simpler” 
model, then this says that, whatever simplification takes place, these parameters 
and processes must be included because (a) the prediction depends on them and 
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(b) the calibration dataset contains information about them and hence the 
complex model is required for a complete calibration. Hence, this would say 
something about the cost of simplification—or at least certain (inappropriate) 
types of simplification. Moreover, if a prediction is dependent on some 
processes/parameters that are in the complex model, and if the contribution  
to uncertainty of those parameters is large and cannot be reduced through cali-
bration, then the complex model can potentially give wrong answers. Error 
variance analysis could be used to determine whether the prediction would be 
any more wrong if these processes were ignored or vastly simplified. 

Lastly, as was noted above for an individual parameter associated with the 
one-dimensional FASST model, if the prediction is insensitive to certain 
processes in the complex model, then those processes could be omitted. 
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APPENDIX A. PREDICTION SENSITIVITIES FOR y1 AND y2 

Prediction sensitivities for y1 

12     1     2 

8.9044822E-02 

3.7992827E-02 

7.8319554E-03 

1.1813355E-02 

–2.9261424E-02 

–3.2721702E-19 

–6.2365748E-02 

6.6851879E-03 

9.8464122E-02 

1.0933653E-02 

1.0997549E-02 

 –0.1438406 

* row names 

bddm 

por 

sani 

lse 

qc 

of 

tcbdm 

shdm 

shc 

rwc 

vgbph 

vge 
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* column names 

pred1_max 

Prediction sensitivities for y2 

12     1     2 

3.1413017E-04 

2.4589594E-02 

5.2337759E-04 

2.5389455E-03 

9.7859866E-05 

0.000000 

–3.2236191E-06 

–2.8450404E-04 

–1.1299936E-04 

1.1236558E-02 

7.3991269E-03 

–0.3860382 

* row names 

bddm 

por 

sani 

lse 

qc 

of 

tcbdm 

shdm 

shc 

rwc 

vgbph 
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vge 

* column names 

pred2_mean 
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APPENDIX B. MODEL RESOLUTION MATRIX 
ASSOCIATED WITH CALIBRATED MODEL 

12    12     1 

9.98E-01 -3.85E-03 -8.95E-15 -1.29E-03 2.38E-03 9.96E-09 -9.35E-03 -1.35E-03 -4.01E-02 4.44E-03 1.29E-02 2.87E-04
-3.85E-03 9.92E-01 -2.51E-15 -2.42E-03 -2.16E-03 -1.57E-07 -1.94E-02 -2.73E-03 -7.72E-02 -1.46E-03 4.19E-02 5.99E-04
-8.95E-15 -2.51E-15 1.25E-28 -1.09E-15 2.65E-17 3.86E-22 4.84E-15 1.31E-15 4.61E-16 2.88E-15 1.91E-15 2.40E-17
-1.29E-03 -2.42E-03 -1.09E-15 9.99E-01 9.10E-04 3.62E-10 -6.05E-03 -9.01E-04 -2.90E-02 7.94E-03 1.23E-03 1.85E-04
2.38E-03 -2.16E-03 2.65E-17 9.10E-04 7.61E-05 3.07E-09 3.47E-03 1.22E-03 1.09E-03 6.00E-03 3.76E-03 1.41E-04
9.96E-09 -1.57E-07 3.86E-22 3.62E-10 3.07E-09 5.17E-13 -3.77E-07 -4.24E-08 2.35E-07 4.83E-07 2.44E-07 -1.40E-08
-9.35E-03 -1.94E-02 4.84E-15 -6.05E-03 3.47E-03 -3.77E-07 9.53E-01 -6.62E-03 -1.91E-01 7.21E-03 8.51E-02 1.43E-03
-1.35E-03 -2.73E-03 1.31E-15 -9.01E-04 1.22E-03 -4.24E-08 -6.62E-03 9.99E-01 -2.82E-02 2.78E-03 9.61E-03 2.03E-04
-4.01E-02 -7.72E-02 4.61E-16 -2.90E-02 1.09E-03 2.35E-07 -1.91E-01 -2.82E-02 1.11E-01 2.07E-01 1.01E-01 5.87E-03
4.44E-03 -1.46E-03 2.88E-15 7.94E-03 6.00E-03 4.83E-07 7.21E-03 2.78E-03 2.07E-01 6.97E-01 4.10E-01 -1.94E-04
1.29E-02 4.19E-02 1.91E-15 1.23E-03 3.76E-03 2.44E-07 8.51E-02 9.61E-03 1.01E-01 4.10E-01 2.50E-01 -2.66E-03
2.87E-04 5.99E-04 2.40E-17 1.85E-04 1.41E-04 -1.40E-08 1.43E-03 2.03E-04 5.87E-03 -1.94E-04 -2.66E-03 1.00E+00  

* row and column names 

bddm 

por 

sani 

lse 

qc 

of 

tcbdm 

shdm 

shc 

rwc 

vgbph 

vge 
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